Infrastructure: Structure Inside the Class Group of a Real Quadratic Field
نویسندگان
چکیده
منابع مشابه
The Unit Group of a Real Quadratic Field
While the unit group of an imaginary quadratic field is very simple, the unit group of a real quadratic field has nontrivial structure. Its study involves some geometry and analysis, but also it relates to Pell's equation and continued fractions, topics from elementary number theory.
متن کاملDefining relations of a group $Gamma= G^{3,4}(2,Z)$ and its action on real quadratic field
In this paper, we have shown that the coset diagrams for the action of a linear-fractional group $Gamma$ generated by the linear-fractional transformations $r:zrightarrow frac{z-1}{z}$ and $s:zrightarrow frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^{3}=s^{4}=1$ are defining relations for $Gamma$. Furt...
متن کاملThe 4-class Group of Real Quadratic Number Fields
In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.
متن کاملComputing the Hilbert class field of real quadratic fields
Using the units appearing in Stark’s conjectures on the values of L-functions at s = 0, we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field. Let k be a real quadratic field of discriminant dk, so that k = Q( √ dk), and let ω denote an algebraic integer such that the ring of integers of k is Ok := Z+ ωZ. An important invariant of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Notices of the American Mathematical Society
سال: 2014
ISSN: 0002-9920,1088-9477
DOI: 10.1090/noti1064